Random Variable Distributions
This page describes random distributions supported by Filebench
Uniform Distribution
DOMAIN: [a;b]
PDF: <math> f(x; a, b) = {1 \over {b - a}} </math>
CDF: <math> F(x; a, b) = {x - a \over {b - a}} </math>
EXPECTED: <math> (b - a) \over 2 </math>
Exponential Distribution
DOMAIN: <math> [0:\infty) </math>
PDF: <math> f(x; \lambda) = \lambda e^{-\lambda x} </math>
CDF: <math> F(x; \lambda) = 1 - e^{-\lambda x} </math>
EXPECTED: <math> 1 \over \lambda </math>
Erlang and Gamma Distributions
DOMAIN: <math> [x:\infty) </math>
PDF: <math> f(x; k, \lambda) = {\lambda^{k} x^{k-1} e^{-\lambda x} \over \Gamma(k)} </math>
CDF: <math> F(x; k, \lambda) = {\gamma(k, \lambda x) \over \Gamma(k)} </math>
EXPECTED: <math> k \over \lambda </math>
In Erlang distribution <math>k</math> is an integer. In Gamma distribution <math>k</math> is a real number.
NOTICE: <math>\gamma()</math> above is a non-normalized incomplete gamma function. Gnuplot's <math>igamma()</math> function, however, is already normalized (i.e., divided by <math>\Gamma(k)</math>).