Difference between revisions of "Random Variable Distributions"
(→Erlang and Gamma Distributions) |
|||
Line 37: | Line 37: | ||
EXPECTED: <math> k \over \lambda </math> | EXPECTED: <math> k \over \lambda </math> | ||
− | In Erlang distribution k | + | In Erlang distribution <math>k</math> is an integer. In Gamma distribution <math>k</math> is a real number. |
+ | |||
+ | NOTICE: <math>\gamma()</math> above is a '''non-normalized''' incomplete gamma function. Gnuplot's <math>igamma()</math> function, however, is already '''normalized''' (i.e., divided by <math>\Gamma(k)</math>). | ||
+ | |||
+ | [[File:Erlang-Gamma-PDF.png]] | ||
+ | [[File:Erlang-Gamma-CDF.png]] |
Revision as of 20:01, 23 October 2013
This page describes random distributions supported by Filebench
Uniform Distribution
DOMAIN: [a;b]
PDF: <math> f(x; a, b) = {1 \over {b - a}} </math>
CDF: <math> F(x; a, b) = {x - a \over {b - a}} </math>
EXPECTED: <math> (b - a) \over 2 </math>
Exponential Distribution
DOMAIN: <math> [0:\infty) </math>
PDF: <math> f(x; \lambda) = \lambda e^{-\lambda x} </math>
CDF: <math> F(x; \lambda) = 1 - e^{-\lambda x} </math>
EXPECTED: <math> 1 \over \lambda </math>
Erlang and Gamma Distributions
DOMAIN: <math> [x:\infty) </math>
PDF: <math> f(x; k, \lambda) = {\lambda^{k} x^{k-1} e^{-\lambda x} \over \Gamma(k)} </math>
CDF: <math> F(x; k, \lambda) = {\gamma(k, \lambda x) \over \Gamma(k)} </math>
EXPECTED: <math> k \over \lambda </math>
In Erlang distribution <math>k</math> is an integer. In Gamma distribution <math>k</math> is a real number.
NOTICE: <math>\gamma()</math> above is a non-normalized incomplete gamma function. Gnuplot's <math>igamma()</math> function, however, is already normalized (i.e., divided by <math>\Gamma(k)</math>).