Difference between revisions of "Random Variable Distributions"
(→Weibull Distribution) |
|||
Line 16: | Line 16: | ||
== Exponential Distribution == | == Exponential Distribution == | ||
− | DOMAIN: <math> [0:\infty) </math> | + | DOMAIN: <math> [0:+\infty) </math> |
PDF: <math> f(x; \lambda) = \lambda e^{-\lambda x} </math> | PDF: <math> f(x; \lambda) = \lambda e^{-\lambda x} </math> | ||
Line 29: | Line 29: | ||
== Erlang and Gamma Distributions == | == Erlang and Gamma Distributions == | ||
− | DOMAIN: <math> [ | + | DOMAIN: <math> [0:+\infty) </math> |
PDF: <math> f(x; k, \lambda) = {\lambda^{k} x^{k-1} e^{-\lambda x} \over \Gamma(k)} </math> | PDF: <math> f(x; k, \lambda) = {\lambda^{k} x^{k-1} e^{-\lambda x} \over \Gamma(k)} </math> | ||
Line 46: | Line 46: | ||
== Weibull Distribution == | == Weibull Distribution == | ||
− | DOMAIN: <math> [ | + | DOMAIN: <math> [0:+\infty] </math> |
PDF: <math> f(x; k, \lambda) = {k \over \lambda} \left({x \over \lambda}\right)^{k - 1} e^{\left({- {x \over \lambda}}\right) ^ k} </math> | PDF: <math> f(x; k, \lambda) = {k \over \lambda} \left({x \over \lambda}\right)^{k - 1} e^{\left({- {x \over \lambda}}\right) ^ k} </math> | ||
Line 56: | Line 56: | ||
[[File:Weibull-PDF.png]] | [[File:Weibull-PDF.png]] | ||
[[File:Weibull-CDF.png]] | [[File:Weibull-CDF.png]] | ||
+ | |||
+ | == Normal Distribution == | ||
+ | |||
+ | DOMAIN: <math> [-\infty:+\infty] </math> | ||
+ | |||
+ | PDF: | ||
+ | |||
+ | CDF: | ||
+ | |||
+ | EXPECTED: |
Revision as of 18:53, 24 October 2013
This page describes random distributions supported by Filebench
Contents
Uniform Distribution
DOMAIN: [a;b]
PDF: <math> f(x; a, b) = {1 \over {b - a}} </math>
CDF: <math> F(x; a, b) = {x - a \over {b - a}} </math>
EXPECTED: <math> (b - a) \over 2 </math>
Exponential Distribution
DOMAIN: <math> [0:+\infty) </math>
PDF: <math> f(x; \lambda) = \lambda e^{-\lambda x} </math>
CDF: <math> F(x; \lambda) = 1 - e^{-\lambda x} </math>
EXPECTED: <math> 1 \over \lambda </math>
Erlang and Gamma Distributions
DOMAIN: <math> [0:+\infty) </math>
PDF: <math> f(x; k, \lambda) = {\lambda^{k} x^{k-1} e^{-\lambda x} \over \Gamma(k)} </math>
CDF: <math> F(x; k, \lambda) = {\gamma(k, \lambda x) \over \Gamma(k)} </math>
EXPECTED: <math> k \over \lambda </math>
In Erlang distribution <math>k</math> is an integer. In Gamma distribution <math>k</math> is a real number.
NOTICE: <math>\gamma()</math> above is a non-normalized incomplete gamma function. Gnuplot's <math>igamma()</math> function, however, is already normalized (i.e., divided by <math>\Gamma(k)</math>).
Weibull Distribution
DOMAIN: <math> [0:+\infty] </math>
PDF: <math> f(x; k, \lambda) = {k \over \lambda} \left({x \over \lambda}\right)^{k - 1} e^{\left({- {x \over \lambda}}\right) ^ k} </math>
CDF: <math> f(x; k, \lambda) = 1 - e^{\left(-{x \over \lambda}\right)^k}</math>
EXPECTED: <math> \lambda \Gamma(1 + {1 \over k})</math>
Normal Distribution
DOMAIN: <math> [-\infty:+\infty] </math>
PDF:
CDF:
EXPECTED: