Difference between revisions of "Random Variable Distributions"
From Filebench
(→Exponential Distribution) |
|||
Line 26: | Line 26: | ||
[[File:Exponential-pdf.png]] | [[File:Exponential-pdf.png]] | ||
[[File:Exponential-cdf.png]] | [[File:Exponential-cdf.png]] | ||
+ | |||
+ | == Erlang and Gamma Distributions == | ||
+ | |||
+ | DOMAIN: <math> [x:\infty) </math> | ||
+ | |||
+ | PDF: <math> f(x; k, \lambda) = {\lambda^{k} x^{k-1} e^{-\lambda x} \over \Gamma(k)} </math> | ||
+ | |||
+ | CDF: <math> F(x; k, \lambda) = {\gamma(k, \lambda x) \over \Gamma(k)} </math> | ||
+ | |||
+ | EXPECTED: <math> k \over \lambda </math> | ||
+ | |||
+ | In Erlang distribution k can be only integer. In Gamma distribution |
Revision as of 19:43, 23 October 2013
This page describes random distributions supported by Filebench
Uniform Distribution
DOMAIN: [a;b]
PDF: <math> f(x; a, b) = {1 \over {b - a}} </math>
CDF: <math> F(x; a, b) = {x - a \over {b - a}} </math>
EXPECTED: <math> (b - a) \over 2 </math>
Exponential Distribution
DOMAIN: <math> [0:\infty) </math>
PDF: <math> f(x; \lambda) = \lambda e^{-\lambda x} </math>
CDF: <math> F(x; \lambda) = 1 - e^{-\lambda x} </math>
EXPECTED: <math> 1 \over \lambda </math>
Erlang and Gamma Distributions
DOMAIN: <math> [x:\infty) </math>
PDF: <math> f(x; k, \lambda) = {\lambda^{k} x^{k-1} e^{-\lambda x} \over \Gamma(k)} </math>
CDF: <math> F(x; k, \lambda) = {\gamma(k, \lambda x) \over \Gamma(k)} </math>
EXPECTED: <math> k \over \lambda </math>
In Erlang distribution k can be only integer. In Gamma distribution